
SANDIA REPORT
SAND2017-5325
Unlimited Release
Printed May 2017

Enabling Diverse Software Stacks on
Supercomputers using High Performance
Virtual Clusters

Andrew J. Younge, Kevin Pedretti, Ryan E. Grant, Ron Brightwell

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc.,
for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2017-5325
Unlimited Release
Printed May 2017

Reprinted May 2017

Enabling Diverse Software Stacks on Supercomputers
using High Performance Virtual Clusters

Andrew J. Younge, Kevin Pedretti, Ryan E. Grant, Ron Brightwell
Center for Computing Research

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1319
ajyoung,ktpedre,regrant,bbbrigh@sandia.gov

Abstract

While large-scale simulations have been the hallmark of the High Performance Computing (HPC)
community for decades, Large Scale Data Analytics (LSDA) workloads are gaining attention
within the scientific community not only as a processing component to large HPC simulations,
but also as standalone scientific tools for knowledge discovery. With the path towards Exascale,
new HPC runtime systems are also emerging in a way that differs from classical distributed com-
puting models. However, system software for such capabilities on the latest extreme-scale DOE
supercomputing needs to be enhanced to more appropriately support these types of emerging soft-
ware ecosystems.

In this paper, we propose the use of Virtual Clusters on advanced supercomputing resources to
enable systems to support not only HPC workloads, but also emerging big data stacks. Specifi-
cally, we have deployed the KVM hypervisor within Cray’s Compute Node Linux on a XC-series
supercomputer testbed. We also use libvirt and QEMU to manage and provision VMs directly on
compute nodes, leveraging Ethernet-over-Aries network emulation. To our knowledge, this is the
first known use of KVM on a true MPP supercomputer. We investigate the overhead our solution
using HPC benchmarks, both evaluating single-node performance as well as weak scaling of a
32-node virtual cluster. Overall, we find single node performance of our solution using KVM on
a Cray is very efficient with near-native performance. However overhead increases by up to 20%
as virtual cluster size increases, due to limitations of the Ethernet-over-Aries bridged network.

3

Furthermore, we deploy Apache Spark with large data analysis workloads in a Virtual Cluster, ef-
fectively demonstrating how diverse software ecosystems can be supported by High Performance
Virtual Clusters.

4

Contents

1 Introduction 9

2 Related Research 11

Hypervisors and Containers . 12

Data Analytics on Cloud Infrastructure . 14

3 Design of High Performance Virtual Clusters 15

Volta: a Cray XC30 testbed . 15

KVM . 16

Guest Performance Tuning . 16

4 Experimental Results 21

Virtual Cluster Configurations . 21

Single-node Performance . 22

Mutli-node HPC Scaling . 26

Apache Spark . 28

5 Discussion 31

6 Conclusion 33

References 34

5

List of Figures

2.1 Hypervisors and Containers . 13

4.1 Intra-node FLOPS performance . 23

4.2 Intra-node GUPS performance . 24

4.3 Intra-node STREAM performance . 25

4.4 HPCC MPI intra-node communication performance, with 2MB messages for band-
width and 8 byte messages for latency . 26

4.5 Weak Scaling of the High Performance Linpack benchmark to 32 nodes 27

4.6 Weak scaling of the HPCG benchmark up to 32 nodes . 28

6

List of Tables

4.1 Problem Sizes listed in Gigabytes and N value for HPL and HPCG, respectively . . 26

4.2 Benchmark results for Spark Perf running on the Volta Spark Virtual Cluster (sec-
onds) . 29

7

This page intentionally left blank.

Chapter 1

Introduction

Currently, we are at the forefront of a convergence within scientific computing between High
Performance Computing (HPC) and Large Scale Data Analytics (LSDA) [39, 31]. This amalgama-
tion of differing viewpoints in distributed systems looks to force the combination of performance
characteristics of HPC’s pursuit towards Exascale with data and programmer oriented concurrency
models found in Big Data analytics platforms. Capitalizing upon the community’s existing intel-
lectual investments in advanced supercomputing systems and leveraging the economies of scale
in hardware infrastructure could benefit more computational methods beyond what is possible as
disjoint environments. Current software efforts in each area have become specialized with the
gap growing rapidly, making concurrent ecosystem support within a single architectural system
increasingly intractable.

Much of the convergence effort has been focused on applications and platform services. Specif-
ically, significant work towards convergent applications has been outlined with the Big Data Ogres
[23] and the corresponding HPC-ABDS model [38]. This convergence can also be seen with efforts
in bringing interconnect advances from HPC to data analytics platforms, such as with InfiniBand
and MapReduce [45]. However, much of the underlying hardware and OS environments between
the latest MPP supercomputing resources and the cloud-enabled runtimes of big data applications
are still something to be reconciled. We believe virtualization can help fill this gap.

In this, we postulate embracing this software diversity on advanced supercomputing platforms
through the use of High Performance Virtual Clusters. The notion of a virtual cluster describes
a self-contained entity for a cluster system that’s specific to a user’s software stack. They can be
structured in any way that physical clusters currently can to support distributed systems, complete
with a head node, compute nodes, storage servers, user gateways, or even P2P services, to name
a few components. Virtual clusters are separated from the underlying computing infrastructure
by running atop a virtualization layer, in our case one that is tuned for improved performance.
This enables disjoint software ecosystems to provision and operate independent software stacks
deployed concurrently on the same hardware.

With a proper design, current HPC system software stacks should continue to operate in the
same environment as before on the same hardware, yet we also enable the ability for emerging
analytics and visualization workloads such as pieces of the Apache Big Data Stack [15], among
others, to deploy custom software specific to application needs rather than adapting to site-specific
software. Furthermore, such virtualized clusters enable new methods for non-standard workflow

9

composition, such as the in-situ coupling of parallel MPI simulations with emerging data analytics
and visualization tools for real-time experimental control, either across or within clusters. Virtual
clusters can conceivably enable the ability to uniquely couple both simulations and analytics for
enhanced computational abilities, both intra and inter cluster, such as with emerging Asynchronous
Many-Task runtimes.

To build High Performance Virtual Clusters, we have chosen to utilize the KVM hypervisor
for running Virtual Machines (VMs) on Cray XC-series supercomputing resources. While in this
paper we use a relatively small testbed for initial prototyping and development, our selection of
running VMs on a Cray resource is a specific one. Cray Inc. supercomputers currently account
for 3 of the top 10 systems as of the Nov 2016 TOP500 supercomputing list [11] and, when com-
pared to standard commodity clusters or cloud infrastructure, their architectural design is highly
optimized for extreme-scale parallel workloads. If successful, we hope a virtual cluster prototype
could scale up to large-scale deployments operating today, or even towards future supercomputing
architectures.

Effectively, we demonstrate that KVM virtual machines can be run on a Cray supercomputer,
which to our knowledge is a novel use case for KVM in a unique supercomputing environment
such as a Cray. Second, we confirm what previous research [30, 48] has already noted, in that
when vitualization is properly designed and configured, very low overhead and good performance
can be provided to HPC applications. This is an important notion for systems that are looking
to improve flexibility of supercomputing software without sacrificing significant performance or
disturbing current workloads. Third, we demonstrate how to run Apache Spark in a completely
unmodified format in a virtual cluster deployment on a Cray testbed. While this is possible with
different storage back-ends or additional reconfiguration [8], we hope this can collectively help
drive the inclusion of more large data analytics stacks in supercomputing.

This manuscript is constructed as follows. First, we evaluate current virtualization efforts in
the related research section, specifically focusing on HPC and big data requirements. Next, we
describe the design and implementation of virtual clusters on a Cray XC30 supercomputer, using
the KVM hypervisor, and detail the technical challenges of running VMs on a Cray efficiently.
Then, we use the HPCC benchmark suite and HPCG to evaluate performance, both from a single-
node perspective, as well as with multi-node experiments up to 768 cores and 32 nodes. We also
detail the running of Apache Spark within a new virtual cluster, and its relative ease of deployment.
Finally, we discuss how our prototype can best move forward towards supporting HPC and Big
Data convergence, and what technological advances are necessary for a more successful future
convergent platform.

10

Chapter 2

Related Research

Cluster computing has become one of the core tools in distributed systems for use in paral-
lel computation [1]. Clusters have manifested themselves in many different ways, ranging from
Beowulf clusters [42], which run Linux on commodity PC hardware, to some of the TOP500
supercomputing systems today. Virtual clusters represent the growing need of users to organize
computational resources in an environment specific to their tasks at hand effectively, instead of
sharing a common architecture across many users. With the advent of modern virtualization, vir-
tual clusters are deployed across a set of Virtual Machines (VMs) in order to gain relative isolation
and flexibility between disjoint clusters while still sharing the same underlying compute infras-
tructure. Virtual clusters, or a set of multiple cluster computing deployments on a single, larger
physical cluster infrastructure, often have the following properties and attributes [20]:

• Resources allocation based on VM units.

• Clusters built of many VMs together, or by re-provisioning physical nodes

• OS, system software, and applications dictated by users, not administrators or vendors.

• Leverage local infrastructure management tools to provide a middle-ware solution for virtual
clusters

– Implementations could be a cloud IaaS such as OpenStack

– Others can a batch queue system such as PBS as found in clusters

• User experience based on virtual cluster management, not single VM management

• Consolidate functionality on a smaller resource platform using multiple VMs

• Fault tolerance through VM migration mechanisms

• Utilize dynamic scaling through the addition or deletion of VMs from the virtual cluster
during runtime

• Connection to back-end storage solutions to provide virtual persistent storage

Given these abstract properties, virtual clusters can take many forms. Initial conceptions in-
cluded the very notion of virtual clusters as an on-demand computing system [35], followed by

11

using virtual clusters within the Grid computing field [9, 26] to satisfy differing Virtual Organiza-
tion requirements [14]. While this methodology worked relatively well throughout High Through-
put Computing (HTC) and such pleasingly parallel workloads were also migrated towards Cloud
infrastructure as it became available. Today, some of the largest HTC workloads are run on large-
scale cloud systems in a manner that resembles virtual clusters, including the LHC CMS and
ATLAS experiments [5].

Efforts have also been underway to support more complex HPC workloads using virtual clus-
ters. The Hobbes project [7] seeks to create an OS & Runtime framework for extreme-scale sys-
tems. In this, the Palacios VMM [29] demonstrated running HPC workloads up to thousands of
nodes with minimal overhead [30], using a Catamount OS [28] specifically tuned for HPC appli-
cations. Within the FutureGrid project, initial investigation into the viability of virtualization was
investigated [47], and small-scale virtual clusters were constructed focused on the OpenStack IaaS,
which leveraged both NVIDIA GPUs and an InfiniBand interconnect using KVM [48] for HPC
molecular dynamics simulations. The Chameleon Cloud [27], a NSF testbed project and follow-on
to FutureGrid, also looks to provide the ability for users to create virtual clusters through a catalog
of appliances which can be deployed and configured for particular software stacks, focusing on
leveraging more HPC-centric hardware.

Hypervisors and Containers

There are numerous efforts to provide virtualization on commodity x86 systems. This includes
virtualization in the form of binary translation, hardware-assisted virtualization, and most recently
in OS-level virtualization, also more commonly known as containers. Even within the spectrum
of full virtualization, there exists multiple types of hypervisors, each with advantages and caveats.
As good design requires a proper selection of the right level of abstraction for providing virtual
clusters atop supercomputing resources, Figure 2.1 briefly details 3 major types of virtualization
most often found today.

With a Type 1 virtualization system, the hypervisor or Virtual Machine Monitor (VMM) sits
directly on the bare-metal hardware, below the OS. These native hypervisors shepherd direct con-
trol of the underlying hardware, and are controlled and operated usually through the use of a single
privileged VM. One example of a type 1 hypervisor is Xen[4], which uses the Xen VMM to virtual-
ize a privileged Linux OS, called Dom0, that then creates and manages other user DomU instances.
This is in contrast to type 2 hypervisors, which utilize a different, and sometimes more convoluted
design. With a Type 2 hypervisor, there is a host OS that sits directly atop hardware as a normal
OS would. However, the OS itself can abstract its own hardware, usually through extended kernel
support or modules, and manages VMs as OS processes. This effectively allows for guest VMs to
run atop existing OS infrastructure with just kernel modules rather than as a complete redesign of
the OS system. The prime example of a type 2 hypervisor with special relevancy to this manuscript
it the Kernel Virtual Machine, or KVM hypervisor as part of Linux. Type 1 and type 2 hypervisors
are distinct from OS level virtualization, also known as containerization. With containers, there
is a single OS; however, instead of direct hardware abstraction, a single OS kernel is used to si-

12

Figure 2.1. Hypervisors and Containers

multaneously run multiple user-space instances in a jailed-root environment, often with separate
namespaces and additional root-level restrictions on underlying resources. These environments
may look and feel like a separate machine, but in fact are simply sharing a single kernel. The most
current example is Docker containers [34]. While this provides near-native performance and ease
of use, it often lacks flexibility and essentially binds resources to a specific kernel, often that kernel
being Linux.

Given the levels of abstraction and various hypervisors available today, KVM, which is a type
2 hypervisor, looked to be the best choice for constructing flexible virtual clusters atop extreme-
scale supercomputing resources. KVM is well supported throughout industry with pervasiveness
throughout current Cloud infrastructure, is well tested, and has support for multiple ISA architec-
tures, including x86, ARM, and POWER architectures. This allows for our design, if successful,
to be extended to other emerging system architectures in the future. The selection of KVM as a
type 2 hypervisor is also not a mistake, as we find this a relatively unobtrusive addition to existing
vendor HPC software stacks, as it is can exist as just a Linux kernel module and user-level support
libraries, without otherwise disturbing the native software stack. This decision is also reinforced
by the selection of the Palacios VMM for HPC workloads [30], which also demonstrated success
in providing advanced virtualization capabilities to HPC. Furthermore, the selection of a type 2
hypervisor in no way precludes using containerization; in fact we surmise that such a hypervisor
could be used with and extend containerization options, such as Shifter [22], to provide additional
levels of security and resource isolation beyond what current container solutions targeted towards
HPC.

13

Data Analytics on Cloud Infrastructure

It is expected that new LSDA and big data efforts will continue to move in a direction towards
convergence with HPC in the context of software platform design [12]. We expect this to be true
if virtualization can make HPC hardware that is traditionally prohibitive in such areas, such as
novel ISA architectures, accelerators, and high-speed interconnects, readily available to big data
platforms. This can effectively ease portability issues at the OS and runtime level. As the deploy-
ment of big data applications and platform services on virtualized infrastructure is well defined
and studied [43] in the cloud computing spectrum, however we hope such efforts can be extended
to provide more efficient resource utilization and direct in-situ analytics of HPC simulations. As
such, research regarding virtualization can also play a part in bringing advanced hardware and
performance-focused considerations to Big Data applications, effectively cross-cutting the conver-
gence with HPC. Recent efforts have taken place utilizing collectives found in HPC applications
within big data frameworks [17], leveraging high-speed, low-latency interconnects directly in Map
Reduce frameworks like Hadoop [21], and investigating areas where performance-centric lessons
learned can be leveraged within big data stacks [2]. These endeavors are collectively pushing
forward the notion of cross-cutting convergence within analytics platform services themselves.

14

Chapter 3

Design of High Performance Virtual
Clusters

Given the expansion in emerging distributed computational paradigms to support current and
future scientific computing challenges at scale, HPC resources need to expand system software ca-
pabilities to adapt. This may be especially true for high-end supercomputing systems and MPP ar-
chitectures, which have historically done well supporting MPI based workloads at high efficiency.
Due to the large influx of virtualization along with Cloud infrastructure throughout industry, cur-
rent CPU architectures including x86 and ARM are now capable of supporting diverse software
stacks through virtual machines. However, bringing virtualization to such specialized supercom-
puting architectures presents a number of technical challenges.

Volta: a Cray XC30 testbed

Throughout this manuscript we illustrate the construction of a prototype mechanism for sup-
porting High Performance Virtual Clusters using the Volta supercomputing testbed system. Volta
is a Cray XC30 system deployed as part of the Advanced Systems Technology Testbeds project
at Sandia National Laboratories through the NNSA’s Advanced Simulation and Computing (ASC)
program. Volta includes 56 compute nodes packaged in a single enclosure, with each node consist-
ing of two Intel “Ivy Bridge” E5-2695v2 processors (24 cores total), 64 GB of memory, and a Cray
Aries network interface. Compute nodes do not contain local storage. Shared file system support
is provided by NFS I/O servers projected to compute nodes via Cray’s proprietary DVS storage
infrastructure. Each compute node runs an instance of Cray’s Compute Node Linux OS [25] (ver.
5.2.UP04), which is based on SUSE Linux 11 with a Cray-customized 3.0.101 Linux kernel.

Volta is not heavily used and it is possible for researchers to obtain root, making it a valuable
resource for system software research. This enabled more rapid prototyping of virtual clusters
on Cray systems than would have been possible using a more production-oriented system. The
infrastructure and techniques we have developed on Volta are also applicable to other Cray systems
such as the Trinity Cray XC40 supercomputer [18], which like Volta and all other known Cray XC
systems does not support virtualization out of the box.

15

KVM

As stated in the previous section, the KVM hypervisor was chosen in these experiments for
a number of reasons. First, KVM is a fully supported Linux kernel module, and as Linux is the
most common OS on supercomputing systems today, makes for a good fit. Furthermore, a Type
2 hypervisor is naturally a better choice for providing virtualization on such a system, as it is
minimally intrusive to the current vendor stack, and does not create considerable performance
impact on host running applications. Finally, virtualization, unlike containers, have the ability to
run completely separate OS and runtime systems on the guest, such as Kitten [29] or other novel
OSes if desired in the future. Given the advances in reducing OS noise through the use of hybrid
and lightweight co-kernels [16, 46], this could also act as a valuable research tool for future OS &
Runtime research.

The default Cray Compute Node Linux kernel does not provide support for KVM, so we needed
to build a custom kernel image. This was not straightforward because enabling KVM modified
several Linux kernel data structure layouts, causing Cray’s binary-only kernel modules to break.
Through trial and error, we identified the critical data structures and modified them to place KVM-
related fields at the end of structures rather than in the middle, thus preserving the field offsets
assumed by Cray’s binary-only modules. We are hopeful this type of workaround will not be
needed in the future, but at present it is even for recent Cray software releases.

While KVM itself is a foundational piece to providing guest VMs on a Cray host compute
node, it alone is not enough. The QEMU machine emulator is necessary in conjunction with KVM
to provide user-space device emulation. This includes console access to the guest and various
peripheral emulation including disk and I/O access. In our prototype we utilized QEMU 2.7.90,
the latest available during time of development. While QEMU/KVM alone can (and will) boot
VMs, the interface to do so is often lacking flexibility and customization often required by more
advanced VM management services. In order to support easy deployment on a Cray, as well as
provide a direct interface for larger orchestration and VM management tools such as OpenStack
[41] in the future, version 3.1.0 of the Libvirt virtualization API was loaded atop QEMU/KVM.
This allows for users to specify easy and sharable VM configurations expressed in XML format,
as well as enable special tuning mechanisms for the best guest performance, which is detailed in
the next session.

Guest Performance Tuning

As performance is a first class function for HPC applications, running VMs on advanced ar-
chitectures also needs to be performance-focused as well. While virtualization, like any software
abstraction, will introduce some overhead beyond running natively, there presents significant op-
portunities in tuning with KVM to minimize overhead and provide the best performance possible.
An efficient virtual machine configuration is specified and described below.

16

<memoryBacking>
<hugepages>
<page size="2" unit="M" nodeset="0"/>
<page size="2" unit="M" nodeset="1"/>

</hugepages>
<nosharepages/>

</memoryBacking>
<cpu match=’exact’>
<model>IvyBridge</model>
<topology sockets=’2’ cores=’12’ threads=’1’/>
<vendor>Intel</vendor>
<numa>
<cell id=’0’ cpus=’0-11’ memory=’30’
unit=’GiB’/>

<cell id=’1’ cpus=’12-23’ memory=’30’
unit=’GiB’/>

</numa>
</cpu>
<numatune>
<memory mode=’strict’ nodeset=’0-1’/>
<memnode cellid="0" mode="strict"
nodeset="0"/>
<memnode cellid="1" mode="strict"
nodeset="1"/>

</numatune>
<vcpu>24</vcpu>
<cputune>
<vcpupin vcpu=’0’ cpuset=’0’/>
<vcpupin vcpu=’1’ cpuset=’1’/>
...
<vcpupin vcpu=’23’ cpuset=’23’/>

</cputune>

The first aspect to focus on was, predictably, the virtualization of the CPU itself. While
QEMU/KVM can handle virtualization of the CPU automatically towards a default set that ensures
comparability on most VT-x eanbled x86 CPUs, doing so has notable performance implications,
including incorrect cache sizes and unimplemented CPU instructions sets. As such, matching the
virtual CPU configuration to the physical CPU set becomes crucial. While one can use the host
mode in libvirt, such functionality was not available due to the age of the KVM code attached to
the 3.0 Linux kernel within Cray CNL. As such, specifying the IvyBridge architecture of Volta’s
CPUs, as well as a matching socket and thread count was necessary as part of the libvirt config-
uration to provide the necessary instruction sets for good performance, including the AVX vector
unit within Intel IvyBridge CPUs.

However, it is necessary to go further than just matching CPU architecture and specifying

17

equal core counts. This is because by default KVM will let Linux process scheduler manage
which vCPUs execute on which physical cores. This can lead to inefficiencies as multiple vCPUs
could execute on a single CPU, effectively degrading performance. This could also happen with
hyperthreading, whereby two logical cores are running different VCPUs yet still end up contending
for a single physical core on the host. Using libvirt’s <cputune> feature allows for a direct pinning
of a VCPU core to a physical core to alleviate this issue by directly specifying each VCPU pinned
to a cpuset of one. Furthermore, to ensure time is kept accurately within guests, the kvm-clock
clock source is used. This paravirtualized driver allows for the guest to gain access to host time
measurements through a memory page which is updated via a MSR, and adjust for small latencies
between the read time and actual time with the guest’s own constant Time Stamp Counter (TSC),
yielding accurate time keeping within the guest.

Another key architectural principal is that when the guest is rendered properly to match the
host, there are considerable performance improvements in memory organization to be realized.
This effort is split into two aspects, guest Non Uniform Memory Access (NUMA) configuration
and the use of Hugepages. Specifying a NUMA topology within the guest enables the correspond-
ing VCPUs efficient access to local physical memory, which can help avoid unnecessary slow-
downs by memory accesses across the Intel QPI between multiple CPU sockets. This specification
requires two steps within Libvirt. The <numatune> section is used to create a NUMA topology of
2 memory cells (matching the dual socket IvyBridge architecture), along with the <cell> bindings
in Libvirt to match memory cells with CPU sets, as well as specify each cell’s size.

Backing an entire guest memory address space in hugepages can have a significant performance
improvement for memory-bound applications. This is because with modern x86 virtualization,
memory faults are handled predominately in hardware through a Translation Lookaside Buffer
(TLB), and in a VM requires up to 6 times more memory accesses due to the design of nested page
tables [6]. While this has shown to be more efficient than using shadow page tables, it is still costly
for applications that require a large TLB reach. With 2MB hugepages (instead of the default 4k
paging), two things happen. First, the page miss cost decreases from 24 to 15 memory accesses
when used in conjunction with Transparent Hugepages (THP) in the guest, and the total number
of page faults decreases due to the additional amount of memory handled within the TLB. Hence,
hugepages enable the memory intensive applications to avoid spending time walking the page table
entries, not only in the decreased number of TLB misses, but through the decreased cost for each
miss.

Within Libvirt, providing 2MB paging is relatively straightforward as with vCPU pinning and
NUMA configuration. Specifying two <hugepages> entries within <memorybacking> in Lib-
virt and matching the nodeset to that of the previously detailed NUMA cell will back the en-
tire guest machine with 2MB hugepages. With modern commodity Linux host OSes, this can
be done the the OS itself using THP or libhugetlbfs. However, due to Cray’s particularity with
CNL and the older 3.0 Linux Kernel, using THP in the host CNL is not an option. Instead,
we leverage Cray’s hugepage application support directly by KVM. This meant setting Cray’s
HUGETLB_DEFAULT_PAGE_SIZE=2M and restricting usage only to the qemu-system-x86_64application.
Furthermore, it was found that pre-allocation of these hugepages by setting the minimum pool size
to the total VM memory amount is critical to performance, as it appropriately balances contigu-

18

ous memory allocation across both NUMA domains, again reducing QPI traversal within the VM.
In a standard Linux guest, THP can be used to provide hugepages support without application
modification, or standard libhugetlbfs is also available.

With both the CPU and memory configurations tuned for good performance, the focus next
shifts on peripherals, which too can have a considerable impact on application performance. For
disk usage, the Virtio paravirtualized driver is used with RAW disk images. While this requires
paravirtualized drivers in the guest, Linux kernels greater than 2.6.25 provide this support and
performance improves drastically. Previous studies have shown Virtio disk usage to be superior
compared to alternatives with IDE or SATA emulation [40].

The next and a critical piece of hardware is the network interconnect, which is often a major
differentiating factor between commodity clusters and MPPs. On the Cray XC30, the interconnect
is implemented by the Cray Aries network interface and router, which was not designed or intended
to support virtual machines. While the Aries network provides considerable bandwidth and latency
advantages over InfiniBand or Ethernet, it does not support Single Root I/O Virtualization (SR-
IOV) as often found with newer Mellanox-based interconnects. Using direct PCI passthrough of
the Aries NIC, like initial InfiniBand efforts [36], is also not possible as it would rob the Host CNL
OS from any network. Furthermore, the Cray device drivers necessary are not be available within
a commodity guest OS.

With the current generation of the Aries interconnect, our only feasible option was to emulate
the Ethernet-over-Aries interconnect. The Aries interconnect is capable of L2 Ethernet emulation
for TCP/IP connectivity between compute nodes, and as such the Ethernet device can be bridged to
provide Ethernet connectivity within the guest VM. However, there are a few extra steps that were
necessary to make the network both functional and performant. First, the assigned MAC address
needs to match the last three octets of the host Ethernet device in order for the Aries network to
route packets. Second, static ARP entries and static IP addresses must be manually assigned with
each guest for all potential interconnected nodes within a virtual cluster. Third, the MTU should be
set to 65520 bytes, the maximum possible MTU size, which matches the host Ethernet-over-Aries
configuration and provides significant performance improvements over a standard MTU of 1500.

With the bridge Ethernet-over-Aries interconnect, there is variance in performance, depend-
ing on usage. When using the Ethernet network across hosts, point-to-point bandwidth measures
around 30 Gbs using the iperf tool [44]. Between two VMs on the same chassis or between a VM
and any compute host, performance dips to 18 Gbs. While this is a large 40% overhead in network
bandwidth, it still provides an Ethernet network that is 60% faster than the current state-of-practice
10 Gbs Ethernet that found in commodity clusters and HPC-tuned clouds. This impact in perfor-
mance is due to the buffering of Ethernet frames within the host OS. While Ethernet will generally
cause performance degradation for large HPC applications at scale compared to native Cray Aries
interconnect, as seen in Section 4, it conversely offers increased bandwidth beyond public large
cloud offering for any Ethernet-based distributed frameworks with 10Gb Ethernet. It is our our
hope this solution will be improved upon soon with the use of SR-IOV or other hardware-based
virtualization techniques in future HPC interconnects.

19

This page intentionally left blank.

Chapter 4

Experimental Results

With the methodology to create performant VMs on Volta in hand, High Performance Virtual
Clusters can be created on Volta. This section describes the process of creating two virtual clusters,
as well as the performance compared to native Cray performance. This includes not only from a
single-node perspective, but also using weak scaling experiments up to 32 nodes and 768 cores.
All experimental results were run 3 times with each data points mean calculated and reported in
the following datasets. Unless specified otherwise, the coefficient of variance for all results was at
or below 3%.

Virtual Cluster Configurations

In order to evaluate the performance of our virtual clusters, it was most appropriate to first
build an HPC oriented virtual cluster. While HPC applications themselves are likely to be fastest
running natively on the Cray, we can use HPC-based benchmarks as tools to effectively measure
performance of our virtual cluster prototype solution. The assumption is that if HPC benchmarks
perform well across our virtual machines, this will also translate to other workloads better suited
for deployment on virtual clusters themselves. This is demonstrated with the use of a second virtual
cluster configuration using the Apache Spark platform running the TeraSort application.

All VMs are configured with a CentOS 7 Linux image running the stock 3.11 kernel with the
latest security patches. From here, the HPC images were loaded with the latest Intel 2017 parallel
studio cluster suite, which includes the ICC and IFORT compilers as well as the latest MKL li-
braries. The MPICH 3.2 MPI library was installed for MPI communication. While OpenMPI and
the Intel MPI libraries were also available for use, MPICH was used due to its close comparabil-
ity with Cray’s MPI libraries, effectively looking for as close to apples-to-apples comparison as
possible for MPI libraries. However, the ability to allow users to deploy the latest software within
each virtual cluster can have profound impacts, as seen in the performance comparison within this
section.

The HPCC and HPCG benchmark workloads were built and run in the virtual cluster environ-
ment. The HPCC benchmark suite [32] provides a well-rounded perspective of the performance of
HPC hardware. It includes key benchmarks such as High Performance Linpack (HPL), DGEMM,
STREAM, PTRANS, RandomAccess, FFT, and PingPong, many of which are detailed herein.

21

However, these benchmarks, with HPL in particular, are relatively synthetic and may not directly
relate to real-world HPC applications. As such, we also chose to deploy the High Performance
Conjugate Gradient (HPCG) benchmark [10]. Between HPL and HPCG, two “bookends” of HPC
are realized to evaluate parallel application performance and scalability across our virtual cluster.

For the native environment, HPCC (with HPL) and HPCG were built using Cray’s standard
programming environment. Specifically, the Cray-Intel programming environment was used with
Intel compiler 16.0.1. Cray’s 2 MB hugepage support was enabled, matching the configuration
used in the guest. By default, the libSci math library is utilized for matrix calculations throughout
various HPCC benchmarks. However we also put forth the effort of compiling a version of HPCC
with the Intel MKL library for reasons detailed in the single-node experiments section herein.

For our Apache Spark virtual cluster, the same CentOS 7 base image from the HPC virtual
cluster was used. Oracle’s Java JDK 8 was subsequently installed, along with Apache Maven and
other support tools. Apache Spark [49] version 2.1.0 was installed in standalone mode. Spark is
one of the leading Big Data Stack platforms within the Apache Foundation, allowing for Map-
Reduce based applications to run both in memory and on disk storage back-ends for increased
efficiency. Spark standalone mode was selected for the virtual cluster with a head node designated
to function both as an NFS server and the Spark master node and application client. Standalone
mode was specifically chosen to aid comparison between a Cray deployment. However, it would
be possible to build a virtual cluster using the more common HDFS storage system instead. While
such deployments in public clouds often leverage node-local storage, there are a few options for
full scale deployments on a Cray, such as using Burst Buffers as investigated previously [8]. This
usage model would provide increased compatibility with existing Big Data Stack services (such
as Hadoop) often found on public cloud infrastructure. This potential deployment on a Cray using
virtualization further illustrates the power and flexibility provided such a virtual cluster architec-
ture.

Single-node Performance

Utilizing our HPC-based virtual cluster, we first look to evaluate single-node performance.
Using micro-benchmarks and tuned synthetic workloads on a single node helps identify areas of
overhead within a node, especially those caused by CPU configuration, memory systems, and VM
entry/exit overheads. As such, we evaluate benchmarks from the HPCC benchmark suite, which
is commonly utilized within HPC systems to evaluate and accept new machine deployments. All
results were also run on the Volta Cray testbed in a native Cray configuration. However, a strict
apples-to-apples comparison is not entirely possible, due to the differing software stacks. While
efforts were made to keep various libraries as similar as possible, by default an older Intel compiler
suite and Cray’s LibSci were used to compile the HPCC suite, compared to the latest Intel compiler
and MKL libraries within VMs.

Turning first to Figure 4.1, direct CPU floating point performance is measured using the DGEMM
and FFT benchmarks. Here, we immediately notice that KVM’s performance is very good. In fact,

22

in some cases, KVM outperforms the native solution running the default Cray software stack,
specifically with DGEMM and MPIFFT. Initially this confused us, as it is very unlikely that a VM
will run faster than Native mode. Upon further investigation, it became apparent that the default
Cray configuration using LibSci math libraries results in a significant decrease in performance
compared to Intel’s MKL math library. Recompiling with MKL support on Volta using an older
Intel MKL library (11.3.1, the latest available on Volta), we see that native performance improves
to at or better than the KVM levels in most cases. However, because within the VM we use the
latest 2017 Update 1 MKL, we are able to gain even further performance benefits. This section
of the code is unlikely to generate major VM entries or exits which would hamper guest VM per-
formance. The end result is that we achieve near-native performance for KVM, with some cases
slight performance improvements due to leveraging the latest system software and libraries within
a VM. Single-node HPL tests reveal a similar trend with KVM, with a 9% and 2% performance
increase with KVM over the default Cray and Cray+MKL, respectively. We further speculate that
Intel has refined MKL recently to provide additional performance improvements. This effect illus-
trates the potential power of virtual clusters for those looking to evaluate dev-ops and testing, or
take advantage of advances in system software sooner than than official support from the system
vendor.

Figure 4.1. Intra-node FLOPS performance

23

Next, we look at the RandomAccess benchmark within HPCC seen in Figure 4.2, which mea-
sures GUPS, or Giga Updates per Second. Here, we observe a small but noticeable overhead with
KVM across the board for RandomAccess. These results are reported using the SANDIA_NOPT
which can give an additional boost in performance to MPIRandomAccess, both natively and within
KVM. Interestingly, we do see that SingleRandomAccess incurs a more significant performance
impact, potentially due to larger TLB miss costs with nested pages tables [6].

Figure 4.2. Intra-node GUPS performance

Moving towards the HPCC memory benchmark STREAM in Figure 4.3 we again witness very
good performance from the KVM implementation when compared to running natively on the Cray.
Here, the benchmark reflects the added benefit of an updated and efficient guest OS. The native
version is using Cray’s Hugepage support with 2MB page size (to be comparable with the VM),
which is based on libhugetlbfs. This is the same mechanism that is used to allocate large contiguous
VM memory for the guest VM. However the VM is running an updated 3.11 Linux kernel which
provides an a more advanced THP implementation, which we estimate is slightly more efficient
in this case at optimizing contiguous memory patterns than libhugetlbfs. However, the potential
benefit of THP in the VM decreases as the complexity of the STREAM benchmark increases,
as with Triad, which more accurately represents real-world application performance. Also, some
times THP can lead to other issues, such as creating additional noise events within compute nodes

24

as the kernel promotes or demotes THP pages, which can also lead to memory fragmentation. As
such, THP usage within a virtual cluster should be carefully examined to determine its utility.

Figure 4.3. Intra-node STREAM performance

Looking to the PingPong bandwidth and latency benchmarks details in Figures 4.4, which in a
single-node configuration measures performance of using MPI sendrecv across a shared memory
system using 8 byte messages for latency and 2MB messages. Note that the error bars in the
charts represent Max and Min values for each test. Here, we see that the effective bandwidth
is notably higher with the native Cray implementation, with latency largely equivalent between
native and KVM configurations. This is due to Cray’s MPI optimization to use XPMEM for
intra-node shared memory communication, whereby a single memory copy is needed. MPICH,
however, performs two copies by default through a sysv shared memory buffer, leading to intra-
node bandwidth degradation as observed here. This particular case illustrates why using a Cray
natively may be a better option in some cases, as for MPI-based applications which are highly
sensitive to intra-node communication bandwidth, running natively will yield the best performance
for specific applications.

25

(a) MPI PingPong Bandwidth (b) MPI PingPong Latency

Figure 4.4. HPCC MPI intra-node communication performance,
with 2MB messages for bandwidth and 8 byte messages for latency

Table 4.1. Problem Sizes listed in Gigabytes and N value for
HPL and HPCG, respectively

Nodes 1(24) 2(48) 4(96) 8(192) 16(386) 32(768)
HPCG (GB) 19.3 38.6 77.2 154.5 308.9 617.9
HPL (N) 57920 81920 115840 163840 231680 327680

Mutli-node HPC Scaling

Moving on to multi-node virtual cluster configurations, we look to evaluate overall system
performance using two HPC “bookends” with HPL and HPCG. As we wish to evaluate the weak
scaling parameters of each application, the problem size selection based on the number of nodes
becomes important, which is specified in Table 4.1 and applies to both native Cray and our virtual
cluster. For HPCG, we let the default problem size adjustment take place which accompanies the
application itself, which assumes roughly 25% of total system memory to avoid potential caching
effects. With HPL, there exists a balance between fitting the problem size to the highest possible
value to perfectly fit available main memory and total benchmark runtime. As such, we chose to
calculate HPL problem size (N) based on using 32GB of RAM, which is enough for producing ac-
ceptable performance and effectively using both NUMA domains, but still keeping overall runtime
of each run on the order of minutes.

Experimental results for HPL are given in Figure 4.5, where data points represent weak scaling
as node count increases. For native experimentation, we focused on the standard Cray compilation
mechanisms for HPL which uses LibSci, as it is the most likely way in which the vast majority of
users will utilize such a system. For a single node experiment, HPL shows a slight performance

26

boost running in a virtual cluster, as expected based from other single-node FLOPS benchmarks
previously detailed in Figure 4.1. Again, this is a direct result of the boost in performance by using
the latest Intel and MKL libraries over the older Intel compiler and LibSci natively. However, this
small performance boost quickly disappears and KVM overhead increases to about 18% as the
problem size and node count increases. This overhead is due to the Ethernet-over-Aries bridged
network within the virtual cluster, compared to using the Aries interconnect natively. Effectively,
the HPL benchmark illustrates that the biggest challenge to providing virtual clusters on super-
computing resources is not the performance overhead of a single node, but instead with the ability
to efficiently use high speed, low latency interconnects that are available. Specifically, the Ethernet
bridge solution is adding significant bandwidth overhead to HPL as well as added latency, and as
such lowers overall application performance.

Figure 4.5. Weak Scaling of the High Performance Linpack
benchmark to 32 nodes

A similar, but less pronounced effect is found by looking at the HPCG benchmark in Figure 4.6.
Again, the application is scaling up to 32 nodes and 768 cores. Single node performance illustrates
just a 3.6% overhead when running HPCG, effectively providing near-native performance in a VM.
However, this overhead grows to around 9-12% as the node count increases. As with scaling HPL,
this overhead is due to the decreased bandwidth and increased latency when using the Ethernet

27

solution within a VM compared to native Aries. However, given the network limitations expressed,
we are still generally surprised to see a benchmark focused on real-world application performance
yield closely comparable performance to native on the Cray. With this result, we expect that if
better network virtualization can be realized on future Cray architectures, virtual clusters could be
a viable solution for medium-scale HPC applications, as well as emerging HPC runtimes.

Figure 4.6. Weak scaling of the HPCG benchmark up to 32 nodes

Apache Spark

Leveraging our Spark virtual cluster, we ran the TeraSort benchmark [37]. TeraSort is a com-
mon and simplistic benchmark, originally designed for Hadoop that was intended to sort large
(1TB) data sizes, even though the benchmark developed for Spark allows for smaller problem
sizes which enable data to stay in-memory. TeraSort proves to be of interest as creates an all-to-all
shuffle between the Map and Reduce phases which stresses data movement significantly, with this
stress growing substantially as the problem size increases. For Spark worker configurations run-
ning on the compute nodes, we specified the use of 24 cores (matching physical cores) and 32GB
of RAM.

28

Table 4.2. Benchmark results for Spark Perf running on the Volta
Spark Virtual Cluster (seconds)

Scale Throughput Aggr-by-key Aggr-by-key-int Aggr-by-key-naive Sort-by-key Sort-by-key-int Count Count-filter
0.001 2.6585 0.106 0.1085 0.199 0.114 0.1125 0.034 0.0575
0.01 2.6285 0.219 0.1905 0.437 0.3065 0.3765 0.0395 0.0935
0.1 2.683 0.474 0.4135 0.9605 0.839 0.7075 0.056 0.1495
1.0 2.6975 2.24 1.886 5.19 2.976 1.797 0.162 0.2665
10.0 2.642 15.429 47.629 32.9335 5.378 3.9455 1.1095 1.1935

TeraSort was run on two problem sizes, 10GB and 100GB datasets generated randomly. While
this is less than a full terabyte of data, it allows for the machine to still be stressed, and for a full
shuffle operation to stress the memory and interconnect limits of the Spark cluster. For the 10GB
problem size, we see that the shuffle easily stays within memory and our computation completes in
3 minutes 9 seconds on average. For moving to a problem size that’s an order of magnitude larger,
we see the total runtime increases by two orders of magnitude to over 8 hours. Here, we believe
we’re stressing the limits of the NFS server. With this result, we hope future endeavors will be
able to leverage more node-local storage such as Burst Buffers [3] or parallel file systems such as
Lustre which would expectedly improve performance drastically.

Unfortunately, a comparison could not be made between a native Spark implementation be-
cause we found the native Cray environment unsuitable for users to effectively run Spark on in
any meaningful capacity. First, much of Spark’s user-friendly scripts utilize ssh, however user ssh
login on a compute node is not utilized natively. Of course, we can create custom job scripts to
start Spark Worker processes directly on the compute nodes, however we still ran into roadblocks,
specifically with the DVS storage mechanisms. Specifically, DVS, which in Volta is an overlay
of NFS (not Lustre) generates numerous errors running Spark with larger files. For testing a sim-
ple 10Gb TeraSort, we were unable to complete a run. We did develop work-arounds that proved
futile. This included running rsync to move input data to tmpfs on each node, which is very
inefficient and impractical any any realistic scale. We also directly mounted the underlying NFS
mount on each compute node, which too is impractical as doing so requires full root privileges on
the Cray to generate, distribute, and insert NFS modules (and its dependencies) to each compute
node, something normal users can not do. However, for users with full Lustre back-end systems,
it is worth noting that one can use Lustre to run Spark standalone mode on a Cray XC, as seen in
related research [8]. This work shows that a Lustre metadata server introduces a bottleneck, and
that mounting loopback devices from Lustre can help alleviate performance impacts. Given the
fact that our virtual cluster machine images can also could be hosted with loopback on Lustre, we
would expect similar performance benefits if our solution was deployed on a Cray XC with Lustre.

To help further define an understanding of Spark performance on virtual clusters running atop
a Cray XC supercomputing testbed, we ran the Spark test suite within spark perf [13, 33]. This
benchmark suite covers a number of common operations that are performed in a Map Reduce
framework, with the ability to increase a scale factor accordingly to increase problem size, as
demonstrated in data presented in Table 4.2. Each value represents the time spent on a given
benchmark problem, and is the median of 10 trials. As we can see, increasing the scale by a fac-
tor of 10 roughly doubles the runtime most benchmarks for small problem sizes, which illustrates

29

increased parallelization of the problem with increasing problem size. As the problem sizes con-
tinues to increase, the runtimes start increase more drastically. Aggregate-by-key benchmarks see
roughly a 4-5x increase in runtime for a 10x larger problem. While this is still efficient, it indicates
the problem size is saturating the cluster. Eventual over-saturation occurs with Aggregate-by-key
with a scaling factor of 10.0, which is aggregating 4 billion records with 10 million unique val-
ues for 400 thousand unique key integers. The exception to scaling is the Scheduling Throughput
benchmark, which consistently schedules 10,000 tasks in under 2.7 seconds.

30

Chapter 5

Discussion

Given the results described in this paper, there are a number of avenues for our prototype
virtual cluster on Cray supercomputing resources to be extended. First, we hope the limitations
pointed out in this paper, in particular the affect of Ethernet emulation over the Aries proprietary
interconnect can be addressed with future hardware designs. While achieving absolute native per-
formance is not strictly necessary, near-native performance with small, deterministic overhead as
seen with technologies such as SR-IOV [24] would represent a important step forward in hardware
technology.

Second, we hope the prototype can move towards further refinement to help support other novel
workloads on HPC hardware. This work could move laterally within the system software stack
with additional performance capabilities, such as additional hardware like accelerators or integra-
tion with additional storage options such as Burst Buffers or parallel filesystems. This prototype
virtual cluster solution could be refined for use on a much larger system, such as Trinity, or other
future Cray platforms. Work could also move vertically with integration towards a larger virtual
cluster orchestration efforts to enhance user experience and help lower the barrier of entry of HPC
for emerging scientific computational problems. Existing container solutions could be integrated
within virtual clusters, potentially creating the overlay of native Docker on a Cray supercomputer,
effectively enabling the hypervisor and host OS kernel to handle security concerns and hardware
control rather than just the a single OS. While this could be viewed as orthogonal to HPC-container
efforts such as Shifter [22], we in fact view this effort as complimentary to virtualization where the
union could collectively enhance experiences for both users and facilities system administrators.

The use of virtual clusters enable users to focus on application ecosystem composition match-
ing desired scientific endeavors, rather than forcing development environments to adapt to HPC
platforms that were never designed to support such workloads. Static batch job schedulers with
vendor-specific OS and library services on most supercomputing resources are tuned primarily for
MPI-based execution models, not data analytics. Effectively, we hope running Virtual Clusters
at high efficiency can lower the barrier of entry to extreme-scale computing for many emerging
computational tools embodied by the 4th paradigm of science [19]. Additionally, we may be able
to construct a framework of scientific experiment management where Virtual Clusters and their
environments can be built, shared, rerun, or archived upon demand across the greater scientific
community.

Last, we envision related research that looks to cross-cut convergence between HPC and big

31

data analytics from a software layer to use virtual clusters. By providing a software ecosystem
that runs well on a supercomputing platform and is also more amenable to existing commodity
analytics environments than native HPC software stacks, development enhancements to tools such
as the Apache Big Data Stack can look to leverage HPC resources more quickly and effectively
than porting existing efforts to an HPC-optimized system software stack or starting from scratch.

32

Chapter 6

Conclusion

This manuscript has described the design, implementation, and experimentation of building
High Performance Virtual Clusters using a specialized Cray supercomputing testbed. These virtual
clusters can extend the a supercomputing platform, in this case a XC30 testbed, to support a wide
range of system software ecosystems. As an example, Apache Spark workloads were run as a
custom virtual cluster, which was not possible on an XC30 natively at the time of writing, given the
limitations of the HPC environment. This effort also leverages traditional HPC benchmarking tools
such as HPCC and HPCG to evaluate the performance of virtual clusters against the native vendor
software solution, both on single node and when scaling up to 768 cores. Overall, we find the
efficiency of the virtualization mechanisms with KVM to provide reasonable performance, but the
best-effort networking solution with an Ethernet-over-Aries system presents challenges in scaling
with application overheads ranging form 10-20% across all resources. However, it is our hope
that this research will serve as motivation to drive further development in upcoming architecture
designs which could alleviate much of this overhead drastically in the future. In this, we find
this research opens the door for other emerging system software beyond what is capable today,
perhaps with future OS designs or scalable large data frameworks to directly leverage advanced
supercomputing resources.

33

This page intentionally left blank.

References

[1] Gene M Amdahl. Validity of the single processor approach to achieving large scale computing
capabilities. In Proceedings of the April 18-20, 1967, spring joint computer conference, pages
483–485. ACM, 1967.

[2] Supun Kamburugamuve andKarthik Ramasamy, Martin Swany, and Geoffrey Fox. Low la-
tency stream processing: Twitter heron with infiniband and omni-path. Technical report,
Indiana University Bloomington, 2017.

[3] Katie Antypas, Nicholas Wright, Nicholas P Cardo, Allison Andrews, and Matthew Cordery.
Cori: a cray xc pre-exascale system for nersc. Cray User Group Proceedings. Cray, 2014.

[4] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Timothy L. Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In Michael L.
Scott and Larry L. Peterson, editors, SOSP, pages 164–177. ACM, 2003.

[5] Tim Bell, B Bompastor, S Bukowiec, J Castro Leon, MK Denis, J van Eldik, M Fermin Lobo,
L Fernandez Alvarez, D Fernandez Rodriguez, A Marino, et al. Scaling the cern openstack
cloud. In Journal of Physics: Conference Series, volume 664, page 022003. IOP Publishing,
2015.

[6] Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and Srilatha Manne. Accelerating
two-dimensional page walks for virtualized systems. In ACM SIGARCH Computer Architec-
ture News, volume 36, pages 26–35. ACM, 2008.

[7] Ron Brightwell, Ron Oldfield, Arthur B Maccabe, and David E Bernholdt. Hobbes: Com-
position and virtualization as the foundations of an extreme-scale os/r. In Proceedings of the
3rd International Workshop on Runtime and Operating Systems for Supercomputers. ACM,
2013.

[8] Nicholas Chaimov, Allen Malony, Shane Canon, Costin Iancu, Khaled Z Ibrahim, and Jay
Srinivasan. Performance evaluation of apache spark on cray xc systems. In Cray User Group
2016 (CUG), 2016.

[9] Jeffrey S Chase, David E Irwin, Laura E Grit, Justin D Moore, and Sara E Sprenkle. Dynamic
virtual clusters in a grid site manager. In High Performance Distributed Computing, 2003.
Proceedings. 12th IEEE International Symposium on, pages 90–100. IEEE, 2003.

[10] Jack Dongarra, Michael A Heroux, and Piotr Luszczek. Hpcg benchmark: A new metric for
ranking high performance computing systems. Knoxville, Tennessee, 2015.

[11] J.J. Dongarra, H.W. Meuer, and E. Strohmaier. Top 500 supercomputers. website, November
2016.

35

[12] Saliya Ekanayake, Supun Kamburugamuve, and Geoffrey Fox. Spidal: High performance
data analytics with java and mpi on large multicore hpc clusters. In Proceedings of 24th High
Performance Computing Symposium (HPC 2016), 2016.

[13] Patrick Wendell et al. Spark-perf: Performance tests for spark. Webpage, 2016.

[14] Ian Foster, Timothy Freeman, Kate Keahy, Doug Scheftner, Borja Sotomayer, and Xuehai
Zhang. Virtual clusters for grid communities. In Cluster Computing and the Grid, 2006.
CCGRID 06. Sixth IEEE International Symposium on, volume 1, pages 513–520. IEEE, 2006.

[15] G. C. Fox, J. Qiu, S. Kamburugamuve, S. Jha, and A. Luckow. Hpc-abds high performance
computing enhanced apache big data stack. In 2015 15th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing, pages 1057–1066, May 2015.

[16] Balazs Gerofi, Masamichi Takagi, Atsushi Hori, Gou Nakamura, Tomoki Shirasawa, and Yu-
taka Ishikawa. On the scalability, performance isolation and device driver transparency of the
ihk/mckernel hybrid lightweight kernel. In Parallel and Distributed Processing Symposium,
2016 IEEE International, pages 1041–1050. IEEE, 2016.

[17] Thilina Gunarathne, Judy Qiu, and Dennis Gannon. Towards a collective layer in the big data
stack. In Cluster, Cloud and Grid Computing (CCGrid), 2014 14th IEEE/ACM International
Symposium on, pages 236–245. IEEE, 2014.

[18] K Scott Hemmert, Michael W Glass, Simon D Hammond, Rob Hoekstra, Mahesh Rajan,
Shawn Dawson, Manuel Vigil, Daryl Grunau, James Lujan, David Morton, et al. Trinity:
Architecture and early experience. In Cray Users Group, 2016.

[19] Tony Hey, Stewart Tansley, Kristin M Tolle, et al. The fourth paradigm: data-intensive
scientific discovery, volume 1. Microsoft research Redmond, WA, 2009.

[20] Kai Hwang, Jack Dongarra, and Geoffrey C Fox. Distributed and cloud computing: from
parallel processing to the internet of things. Morgan Kaufmann, 2013.

[21] Nusrat S Islam, MW Rahman, Jithin Jose, Raghunath Rajachandrasekar, Hao Wang, Hari
Subramoni, Chet Murthy, and Dhabaleswar K Panda. High performance rdma-based design
of hdfs over infiniband. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, page 35. IEEE Computer Society Press, 2012.

[22] Douglas M Jacobsen and Richard Shane Canon. Contain this, unleashing docker for hpc.
Proceedings of the Cray User Group, 2015.

[23] Shantenu Jha, Judy Qiu, André Luckow, Pradeep Kumar Mantha, and Geoffrey C. Fox. A
tale of two data-intensive paradigms: Applications, abstractions, and architectures. In Pro-
ceedings of the 3rd International Congress on Big Data, 2014.

[24] Jithin Jose, Mingzhe Li, Xiaoyi Lu, Krishna Chaitanya Kandalla, Mark Daniel Arnold, and
Dhabaleswar K Panda. Sr-iov support for virtualization on infiniband clusters: Early experi-
ence. In Cluster, Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM International
Symposium on, pages 385–392. IEEE, 2013.

36

[25] Larry Kaplan. Cray cnl. Technical report, FastOS PI Meeting & Workshop.

[26] Katarzyna Keahey, Ian Foster, Timothy Freeman, and Xuehai Zhang. Virtual workspaces:
Achieving quality of service and quality of life in the grid. Scientific programming,
13(4):265–275, 2005.

[27] Kate Keahey. Chameleon: Building an experimental instrument for computer science as
application of cloud computing. Technical report, HEPiX at LBNL, Oct 2016.

[28] Suzanne M Kelly and Ron Brightwell. Software architecture of the light weight kernel,
catamount. In Proceedings of the 2005 Cray User Group Annual Technical Conference,
pages 16–19. Citeseer, 2005.

[29] John Lange, Kevin Pedretti, Trammell Hudson, Peter Dinda, Zheng Cui, Lei Xia, Patrick
Bridges, Andy Gocke, Steven Jaconette, Mike Levenhagen, et al. Palacios and kitten: New
high performance operating systems for scalable virtualized and native supercomputing. In
Parallel & Distributed Processing (IPDPS), 2010 IEEE International Symposium on, pages
1–12. IEEE, 2010.

[30] John R Lange, Kevin Pedretti, Peter Dinda, Patrick G Bridges, Chang Bae, Philip Soltero,
and Alexander Merritt. Minimal-overhead virtualization of a large scale supercomputer. In
ACM SIGPLAN Notices, volume 46, pages 169–180. ACM, 2011.

[31] Robert Leland, Richard Murphy, Bruce Hendrickson, Katherine Yelick, John Johnson, and
Jonathan Berry. Large-Scale Data Analytics and Its Relationship to Simulation. Technical
report, Sandia National Laboratories, 2016.

[32] Piotr R Luszczek, David H Bailey, Jack J Dongarra, Jeremy Kepner, Robert F Lucas, Rolf
Rabenseifner, and Daisuke Takahashi. The hpc challenge (hpcc) benchmark suite. In Pro-
ceedings of the 2006 ACM/IEEE conference on Supercomputing, page 213. Citeseer, 2006.

[33] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman, Davies
Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, et al. Mllib: Machine learning
in apache spark. Journal of Machine Learning Research, 17(34):1–7, 2016.

[34] Dirk Merkel. Docker: lightweight linux containers for consistent development and deploy-
ment. Linux Journal, 2014(239):2, 2014.

[35] Justin Moore, David Irwin, Laura Grit, Sara Sprenkle, and Jeff Chase. Managing mixed-use
clusters with cluster-on-demand. Duke University Department of Computer Science Techni-
cal Report, 2002.

[36] Malek Musleh, Vijay Pai, John Paul Walters, Andrew J. Younge, and Stephen P. Crago.
Bridging the Virtualization Performance Gap for HPC using SR-IOV for InfiniBand. In Pro-
ceedings of the 7th IEEE International Conference on Cloud Computing (CLOUD 2014),
Anchorage, AK, 2014. IEEE.

[37] Owen OMalley. Terabyte sort on apache hadoop. Yahoo, available online at:
http://sortbenchmark. org/Yahoo-Hadoop. pdf,(May), pages 1–3, 2008.

37

[38] Judy Qiu, Shantenu Jha, Andre Luckow, and Geoffrey C Fox. Towards hpc-abds: An initial
high-performance big data stack. Building Robust Big Data Ecosystem ISO/IEC JTC 1 Study
Group on Big Data, pages 18–21, 2014.

[39] Daniel A Reed and Jack Dongarra. Exascale computing and big data. Communications of
the ACM, 58(7):56–68, 2015.

[40] Rusty Russell. virtio: towards a de-facto standard for virtual i/o devices. ACM SIGOPS
Operating Systems Review, 42(5):95–103, 2008.

[41] Omar Sefraoui, Mohammed Aissaoui, and Mohsine Eleuldj. Openstack: toward an open-
source solution for cloud computing. International Journal of Computer Applications, 55(3),
2012.

[42] T.L. Sterling. Beowulf cluster computing with Linux. The MIT Press, 2001.

[43] Fengguang Tian and Keke Chen. Towards optimal resource provisioning for running mapre-
duce programs in public clouds. In Cloud Computing (CLOUD), 2011 IEEE International
Conference on, pages 155–162. IEEE, 2011.

[44] Ajay Tirumala, Feng Qin, Jon Dugan, Jim Ferguson, and Kevin Gibbs. Iperf: The tcp/udp
bandwidth measurement tool. Webpage, 2005.

[45] M. Wasi ur Rahman, N. S. Islam, X. Lu, J. Jose, H. Subramoni, H. Wang, and D. K. D.
Panda. High-performance rdma-based design of hadoop mapreduce over infiniband. In Par-
allel and Distributed Processing Symposium Workshops PhD Forum (IPDPSW), 2013 IEEE
27th International, pages 1908–1917, May 2013.

[46] Robert W Wisniewski, Todd Inglett, Pardo Keppel, Ravi Murty, and Rolf Riesen. mos: An
architecture for extreme-scale operating systems. In Proceedings of the 4th International
Workshop on Runtime and Operating Systems for Supercomputers, page 2. ACM, 2014.

[47] Andrew J. Younge, Robert Henschel, James T. Brown, Gregor von Laszewski, Judy Qiu, and
Geoffrey C. Fox. Analysis of Virtualization Technologies for High Performance Computing
Environments. In Proceedings of the 4th International Conference on Cloud Computing
(CLOUD 2011), Washington, DC, July 2011. IEEE.

[48] Andrew J Younge, John Paul Walters, Stephen P Crago, and Geoffrey C Fox. Supporting high
performance molecular dynamics in virtualized clusters using iommu, sr-iov, and gpudirect.
In ACM Virtual Execution Environments (VEE) 2015, in conjunction with ACM ASPLOS,
volume 50, pages 31–38. ACM, 2015.

[49] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy Mc-
Cauley, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing. In Proceedings of the 9th
USENIX conference on Networked Systems Design and Implementation, pages 2–2. USENIX
Association, 2012.

38

DISTRIBUTION:

1 MS 1319 Andrew J. Younge, 1423
1 MS 1320 Kevin Pedretti, 1423
1 MS 1319 Ryan E. Grant, 1423
1 MS 1319 Ron Brightwell, 1423

39

This page intentionally left blank.

v1.40

41

42

